笔记关键词检索?

在所有笔记中搜索你感兴趣的关键词!

《TensorFlow深度学习算法原理与编程实战》

作者:蒋子阳


熵 entropy

对于某个事件,有n种可能性,每一种可能性都有一个概率p(xi)

这样就可以计算出某一种可能性的信息量。举一个例子,假设你拿出了你的电脑,按下开关,会有三种可能性,下表列出了每一种可能的概率及其对应的信息量

序号 事件 概率p 信息量I
A 电脑正常开机 0.7 -log(p(A))=0.36
B 电脑无法开机 0.2 -log(p(B))=1.61
C 电脑爆炸了 0.1 -log(p(C))=2.30

注:文中的对数均为自然对数

 

我们现在有了信息量的定义,而熵用来表示所有信息量的期望,即:

H(X)=−∑i=1np(xi)log(p(xi))

 

其中n代表所有的n种可能性,所以上面的问题结果就是

H(X)===−[p(A)log(p(A))+p(B)log(p(B))+p(C))log(p(C))]0.7×0.36+0.2×1.61+0.1×2.300.804

 

然而有一类比较特殊的问题,比如投掷硬币只有两种可能,字朝上或花朝上。买彩票只有两种可能,中奖或不中奖。我们称之为0-1分布问题(二项分布的特例),对于这类问题,熵的计算方法可以简化为如下算式:

H(X)==−∑i=1np(xi)log(p(xi))−p(x)log(p(x))−(1−p(x))log(1−p(x))

 

评论 (0)

发布评论

你的邮箱地址不会被公开。请输入所有带 * 的信息。