笔记关键词检索?

在所有笔记中搜索你感兴趣的关键词!

《TensorFlow深度学习算法原理与编程实战》

作者:蒋子阳


tf.layers.conv2d()

功能:2D 卷积层

结构

conv2d(inputs, filters, kernel_size, 
    strides=(1, 1), 
    padding='valid', 
    data_format='channels_last', 
    dilation_rate=(1, 1),
    activation=None, 
    use_bias=True, 
    kernel_initializer=None,
    bias_initializer=<tensorflow.python.ops.init_ops.Zeros object at 0x000002596A1FD898>, 
    kernel_regularizer=None,
    bias_regularizer=None, 
    activity_regularizer=None, 
    kernel_constraint=None, 
    bias_constraint=None, 
    trainable=True, 
    name=None,
    reuse=None)

参数

inputs:Tensor 输入

filters:整数,表示输出空间的维数(即卷积过滤器的数量)

kernel_size:一个整数,或者包含了两个整数的元组/队列,表示卷积窗的高和宽。如果是一个整数,则宽高相等。

strides:一个整数,或者包含了两个整数的元组/队列,表示卷积的纵向和横向的步长。如果是一个整数,则横纵步长相等。另外, strides 不等于1 和 dilation_rate 不等于1 这两种情况不能同时存在。

padding"valid" 或者 "same"(不区分大小写)。"valid" 表示不够卷积核大小的块就丢弃,"same"表示不够卷积核大小的块就补0。 "valid" 的输出形状为"valid" 的输出形状为其中, 为输入的 size(高或宽), 为 filter 的 size, 为 strides 的大小, 为向上取整。

data_formatchannels_last 或者 channels_first,表示输入维度的排序。

dilation_rate:一个整数,或者包含了两个整数的元组/队列,表示使用扩张卷积时的扩张率。如果是一个整数,则所有方向的扩张率相等。另外, strides 不等于1 和 dilation_rate 不等于1 这两种情况不能同时存在。

activation:激活函数。如果是None则为线性函数。

use_biasBoolean类型,表示是否使用偏差向量。

kernel_initializer:卷积核的初始化。

bias_initializer:偏差向量的初始化。如果是None,则使用默认的初始值。

kernel_regularizer:卷积核的正则项

bias_regularizer:偏差向量的正则项

activity_regularizer:输出的正则函数

kernel_constraint:映射函数,当核被Optimizer更新后应用到核上。Optimizer 用来实现对权重矩阵的范数约束或者值约束。映射函数必须将未被影射的变量作为输入,且一定输出映射后的变量(有相同的大小)。做异步的分布式训练时,使用约束可能是不安全的。

bias_constraint:映射函数,当偏差向量被Optimizer更新后应用到偏差向量上。

trainableBoolean类型。

name:字符串,层的名字。

reuseBoolean类型,表示是否可以重复使用具有相同名字的前一层的权重。

返回值:

输出 Tensor

异常抛出:

ValueError:if eager execution is enabled.

参考资料: https://blog.csdn.net/gqixf/article/details/80519912

评论 (0)

发布评论

你的邮箱地址不会被公开。请输入所有带 * 的信息。