sklearn.model_selection.train_test_split() 2020-07-31 19:56 方法 评论 0 更多详情 功能:进行训练集和测试集的随机切分 X_train,X_test, y_train, y_test =sklearn.model_selection.train_test_split(sample_data,sample_target,test_size=0.25, train_size=None,random_state=0,stratify=y_train) train_data:所要划分的样本特征集 train_target:所要划分的样本类别数据 test_size:测试样本占比,如果是整数的话就是样本的数量。默认是0.25 train_size:训练样本的占比,如果指定了test_size按照test_size比例来分配。 random_state:是随机数的种子。 stratify:为了保持split前类的分布,保证训练集和测试集内类的分布比例相同。 import numpy as np from sklearn.model_selection import train_test_split X, y = np.arange(10).reshape((5, 2)), range(5) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.33, random_state=42) ............